If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+2k=96
We move all terms to the left:
3k^2+2k-(96)=0
a = 3; b = 2; c = -96;
Δ = b2-4ac
Δ = 22-4·3·(-96)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-34}{2*3}=\frac{-36}{6} =-6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+34}{2*3}=\frac{32}{6} =5+1/3 $
| m-2+3=-(m+1) | | 2x/10=3x/15 | | 3x−1=7x+2 | | 7x+13+2x-9+41=180 | | 20x-3=87 | | 4z/9*7=-2 | | 10(x-4)=-140 | | 10n+9=12 | | -380=5(9x+5) | | -380=5(9x+) | | -5a+16+8a=4a-9 | | -5+12=21-2m | | x=x^2-8x+20 | | -6m+24=-6 | | 4z/97=-2 | | 22+12n=-2+9n | | -32=-5n-11n | | 5+0.50p=1.00p | | 5p+0.50=1.00p | | (1-2x)(1-2x)=0 | | -55-8x=90-3x | | 6r-12r=-2r-28 | | v2+13=0 | | 8+2x=8-2x | | 6x+15x=24 | | 8x+8=-6(x-1) | | 5x+16x=27 | | w2+7=0 | | e^+9=94 | | xx5-9=x2 | | 2x+3=-4(x-1) | | 9-5x-7-6x=4 |